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LETTER TO THE EDITOR

A mean-field theory of the elastic granular disc model
in two dimensions

Jian Wang
Department of Chemistry, Brandeis University, Waltham, MA 02254, USA

Received 20 January 1989

Abstract. We have constructed a Stephen-type mean-field theory for the elastic granular
disc model in two dimensions. We have calculated the mean-field value of two crossover
exponents ¢, and ¢,, which describe the ways in which the two-point elastic susceptibility
and the angle-angle correlation function scale with the distance, respectively. We found
that ¢, =2 and ¢, =1. The possible relation of ¢, and ¢, to the bulk modulus exponent
f is discussed.

Recently much attention has been directed towards randomly diluted elastic networks.
Most studies have focused on the following aspects: (1) computer simulation [1-5];
(2) scaling analysis [6,7]. Up to now, a field theory or even a mean-field theory to
understand the critical behaviour of an elastic network has not been proposed. In this
letter, we give a Stephen-type mean-field [8] theory for a two-dimensional granular
disc model introduced by Feng [9]. We introduce two crossover exponents ¢, and ¢,
describing the ways in which the two-point elastic susceptibility and splay elastic
susceptibility (or angle-angle correlation function) scale with the distance, respectively.
We show that as we turn on the angular part in the granular disc Hamiltonian, we
have a crossover from ¢, =1 to ¢, =2. Using a node link picture [10], one can get a
scaling relation relating ¢, to the bulk modulus exponent f as

f=d-2)v+¢,. (1)

Our result gives fyr =4 which agrees with the scaling analysis [6]. A possible relation
between ¢, and ¢, would be ¢, = ¢,+2» from dimensional analysis. Hence we may
have

f=dv+¢,. @
The Hamiltonian of the granular disc model [9] can be written as follows:

@
where ¢; is an indicator variable: ¢; =1 if bond b is occupied and ¢; =0 otherwise,
and (ij) indicates a sum over pairs of nearest-neighbour sites, where

Hy=30,|(,— w) - RyP+1B.|((w;— ;) x R;) x Ry + R(6,+ 6,) x Ry[*+1y,R?|6, - 6,
(4)

where u; is the displacement associated with site i, IQ,, is a unit vector along sites i and
J, 6; is the angle of the disc at site i and 7 is a unit vector perpendicular to the
two-dimensional system. Here a,, 8, and ¥, are elastic constants; R is the radius of
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the disc. Note that this model is rotational invariant only when R = a where a is the
lattice spacingt. When R =0 and a, = B, one has the isotropic force model (or Born
model). One sees that the Born model consists of a CF term with elastic constant a;
and an external field term with coefficient 8,. We expect that turning on R or allowing
the angular degrees of freedom 6; will drive the system to a new universality class
different from that of the random resistor network (RRN).

The field theory using Stephen’s formalism [8] has been discussed in detail by
Harris and Lubensky in [11]. The effective Hamiltonian can be calculated as

e‘”=ff=l])[1—p+p exp(-Z Hq(a)ﬂ (%)
or
Zln[l p+pexp<—ZHij(a))] (6)
(i) a

where p is the concentration. Here we have introduced n replicas to facilitate the
random average and a represents the replica index. Now we decompose (6) into its
Fourier components exp(iK, - ), exp(iK, - u;,) and exp(iP- @,), where K,, K, and P
are n-component vectors. We obtained (up to a constant):

H.=-Y Y By expliK, - (u, —u;,)] exp[iK, - (u,, — u;, )] exp[—iRR, K, - (6;+6;)

K
x exp[iRR;K, - (0, +6;)] exp[iP- (6, 6,)] (7
where
© (_1)I+1 . ( P2 ) ( K5+K2)
B, = —_— _oxT Ry
= vexp| —op s Jexp| - ®)

where we have set a, =B, for simplicity. Here K,=K,.,é,+K .6,+P,é; and v=
p/{(1—p). Now we define the following quantities:

®y(K) =exp(iK, - u;,) exp(iK, - u;,) exp(iP- 6;)
®{7(K)=Dy(K) cos(RK, - 6,)
P3(K)=—-®y(K)sin(RK, - 6,) (9)
D (K)=®y(K) cos(RK, - 6,)
PYK)=D(K)sin(RK, - 6,).
o (7) can be written as
eﬂ__ Y ZZ By [V (K)D YV (~K)+ DD (K)D Y (~K)] (10)
2,- xy ij

where y(x) (y,”) is the nearest-neighbour indicator along the x (y) direction, i.e. it is
one if sites i and j are nearest neighbours along the x (y) direction and zero otherwise.
Since there is no dilution for the site, we can add the kinetic energy H' of the disc
system to H.g, where

1
1 2,2 2,2 1. p2, 252
H ——ZZ(mw,uixa+mwxuiya+5mR w365,).
la

t As pointed out by Lubensky.
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After making a Hubbard-Stratanovich transformation, we obtain

e w—J(DW) exp(—; T LT BK' (i) (YREKYR(-K)

l=x,y ij K
(I)(K)\p(l)(_K))) e Hi—H (11)
where
= L LTIV (-K)+ Y E(K)®3(-K)] (12)

I=x,y i

where ¥ is a field variable.

The mean-field equation can be obtained by evaluating the ¥ integral in
| Du D@ e "er by steepest descents. Differentiating the exponent with respect to ¥
gives the mean-field equation

By (vi) W (K) = (DY (K)) (13)

BX (v R(K) = (D7 (K)) (14)
where (A) denotes _(Du DoAe H"H/Z, and Z,=5Du Do e "' Here we have
used the summation convention. We now take the Fourier transformation of (13):

""(W)-J DP DK, DK, e W<*< ¢!™:, e WP PP (K) (15)

where W = W,é,+ W, é,+ W,é,. We obtain
BR(y{) (W)
=HO( Wy —6;)8( W, — 1, )8(W, —uy, — R9;))
+3(8(W, —6;,)8( W, —u, )8(W, —u, + RS, ))

1 3
—2—Z:exp[——w,(W2+W2)—— §<§R2W3—2WyRW9>
W1
2 (’"(W)+ WP (W — RW,é,)
1
(X)(W)" (t)(w 2RW,é,)
1
+ TYIW - Rw,,(e,+e2)]+ \I’(y)[W+RW9(el—e2)]

1
t= ‘I"('v)[w RWa(e1+e2)]———\I’(y)[W RW,(é,~ ez)]]

2i
+term with R replaced by —R (16)
where
D} Di+ D}
By =B+ ——+——=+. ..
WP T4y, R? T 4oy (17)
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and Bo=In(1+v), D}=9°/0W3, D3=9"/3W> and D} =4"/d W};. We now expand (16)
with respect to RW, and keep the quadratic term of W,. We obtain

( (x)) R\I,(X)
—-—1—exp<‘1'(")+‘1'(” —wzwz—mw IR W2>
2Z, 2! 4 °
X (2+2R*W3D3W ) + REWAD* W) (18)

where we have written D*= Di+ D3 and W>= Wi+ W2,
Similarly, from (14), we have

B

1 ) m 3m
- x +\p(y) b 2W2 2R2W2
2Z, exP( 2 g e
X (2+2R*WEDW Y+ RPWED* YY), (19)

Note that ¥{}’ and ¥}’ are symmetric in (18) and (19); we assume that they have
the same scaling form in the critical region, i.e. ¥{}'~ ¥’ ~ S,. From (18) and (19),
we obtain

1 3
S -z (1+2BwR*W32D3S) exp(4Bws—%' wiWw? -

_7“'§R2W§) (20)
where S = S,/2By and we have used the fact that (Y T=(y) ' =8,/2.

As discussed in detail in [8], one has Z, = e*® to ensure the percolation threshold
which is determined by 4B,=1. Now we look for a solution of the form
2 2

w w
S=1-rfF| a,Wr®, y, W3R s, — 2 ) 21
ro (az o' Y2 0? a, it 72R2r§+d’2 (21)

whete r,=1-4B, and F is a scaling function. Substituting (17) and (21) into (20)
and expanding the exponent, we have [8]

3 R
%F2+r(‘,_"F~—;nwl W '""’2R W2——— W3D*F ——— D*F - IBD§F=0 (22)

"0 4 azro Y250

where we have omitted terms which do not contribute to (22) in the scaling region.
Note that when R =0, we have
mw? 1
iF+ "F——z——‘ 5 D’F=0 (23)

Qg

W2~

which is the same form as in (4.18) of [8] with B=1. We have [8] ¢, =1 and A=2
for (23) which is the result of RRN. When R is not zero, we still have A=2 and 8 =1
from (22). But we have ¢, =2 and ¢, =1 (a crossover). It is the term R*W2r;'D*F
in (22) which is responsible for the crossover.

We now consider the two-point correlation function or elastic susceptibility

Xk, (%, x') = [‘Pxx,Ky(x)q’—x,,—xy(x')]av

= [eXp( _!%'2'<QllG|QI>)]av

K2
= xp(x, x’)(l “3a L#/ ") (24)
1
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where Wi (x)=exp(iK, u.(x)+iK,u,(x)), [ l., denotes the random average, Q, is
the generalised displacement for compression and G is the Green function of the
system. Hence (Q,|G|Q,)™" is a two-point effective elastic constant if we let the vector
(K, K,) be parallel to x—x'". Here x,(x, x') is the susceptibility for percolation.
Comparine (24) with (21), we identify ¢, as the crossover exponent which describes
the way (Q,|G|Q,) scales with the distance. Similarly we define the splay elastic
susceptibility x,(x, x') as:

Xp(x, x’) = [exp(lpex) CXP(“iPGx')]av
2
= [exp( —% <QZ|GIQZ))] av

P? /
=y (x,x.’)(l——L"’2 ”) (25)
P 2y,

where Q, is the generalised displacement where the disc at x is rotated by an angle 6
and the disc at x’ is rotated by an angle —@ and (Q,|G|Q,)™" is the corresponding
effective elastic constant. We identify ¢, as the exponent which describes the way
(Q,| G| Qy) scales with distance. If opposite sides (of length L) of a square are displaced
by u and —u respectively, then the energy E ~2Ku®. Using the node-link picture [10]
the energy is that of (L/£)* links, each of length £ at whose ends discs suffer a relative
displaceinent ~auf/ L, thus we obtain

E ~(L/£)*(aug/L)’ke ", (26)
So K ~k&™®/” or f= ¢, in two dimensions. Generally in d dimensions, we then have
f= (d “2)V+¢1.

This equation gives the mean-field value fyr =4 which is consistent with the scaling
theory [6]. It is not clear how to relate ¢, to ¢,. From (21), dimensional analysis
seems to suggest that ¢, = ¢, +2v, or f=dv + ¢,. This equation is reminiscence of the
conjectured relation [2,11-14] f=dv+ ¢, where ¢, is the crossover exponent for
RRN. For the bond-bending model [2, 6], we have proved [15] that ¢,= ¢, which
supports our analysis. Although we cannot prove f=dv + ¢,., our result favours this
conjectured relation.

In summary, we have constructed a Stephen-type mean-field theory. We have
introduced two crossover exponents ¢, and ¢, and obtained their mean-field value.
Finally, we have discussed the relation between ¢,, ¢, and the bulk modulus
exponent f.

I would like to thank Professor A B Harris for his guidance and support, and Professor
T C Lubensky for helpful discussions. I thank the NSF for partial support under grant
no DMR 85-19059 of the MRL program, and the NIH for support under grant no
4-60357.

References

[1] Feng S and Seng P N 1984 Phys. Rev. Lett. 82 216
[2] Feng S C, Sen P N, Halperin B I and Lobb C J 1984 Phys. Rev. B 30 5386
{3] Day A R, Tremblay R R and Tremblay A M S 1986 Phys. Rev. Lett. 56 2501



L406 Letter to the Editor

[4] Roux S and Hansen A 1988 Europhys. Lett. 6 301
Hansen A and Roux S 1988 Universality Class of Central Force Percolation preprint
[5] Zabolitzky J G, Bergmann D J and Stauffer D 1986 J. Stat. Phys. 44 211
[6] Kantor Y and Webman 1 1984 Phys. Rev. Lett. 52 1891
[7] Bergman D J and Kantor Y 1984 Phys. Rev. Lett. 53 511
[8] Stephen M J 1978 Phys. Rev. B 17 4444
[9] Schwartz L M, Johnson D L and Feng S 1984 Phys. Rev. Lett. 52 831
Feng S 1985 Phys. Rev. B 32 510
[10] Skal A S and Shklovskii B I 1974 Fiz. Tekh. Poluprovodn. 8 1582 (Sov. Phys.- Semicond. 1975 8 1029)
{111 Harris A B and Lubensky T C 1987 Phys. Rev. B 35 6964
“12] Roux S 1986 J. Phys. A: Math. Gen. 19 L351
{13] Sahimi M 1986 J. Phys. C: Solid State Phys. 19 L79
[14] Harris A B and Lubensky T C unpublished
[15] Wang J and Harris A B 1988 Europhys. Lett. 6 615
Wang J, Harris A B and Lubensky T C unpublished



