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LEITER TO THE EDITOR 

A mean-field theory of the elastic granular disc model 
in two dimensions 

Jian Wang 
Department of Chemistry, Brandeis University, Waltham, MA 02254, USA 

Received 20 January 1989 

Abstract. We have constructed a Stephen-type mean-field theory for the elastic granular 
disc model in two dimensions. We have calculated the mean-field value of two crossover 
exponents and d2, which describe the ways in which the two-point elastic susceptibility 
and the angle-angle correlation function scale with the distance, respectively. We found 
that = 2 and b2 = 1. The possible relation of 6, and C$* to the bulk modulus exponent 
f is discussed. 

Recently much attention has been directed towards randomly diluted elastic networks. 
Most studies have focused on the following aspects: (1) computer simulation [l-51; 
(2) scaling analysis [6,7]. Up to now, a field theory or even a mean-field theory to 
understand the critical behaviour of an elastic network has not been proposed. In this 
letter, we give a Stephen-type mean-field [SI theory for a two-dimensional granular 
disc model introduced by Feng [9]. We introduce two crossover exponents 41 and 42 
describing the ways in which the two-point elastic susceptibility and splay elastic 
susceptibility (or angle-angle correlation function) scale with the distance, respectively. 
We show that as we turn on the angular part in the granular disc Hamiltonian, we 
have a crossover from +1 = 1 to 41 = 2. Using a node link picture [lo], one can get a 
scaling relation relating 

(1) 

Our result gives fMF = 4 which agrees with the scaling analysis [6]. A possible relation 
between 42 and 41 would be bl = from dimensional analysis. Hence we may 
have 

to the bulk modulus exponent f as 

f = ( d  - 2) v + c$l. 

The Hamiltonian of the granular disc model [9] can be written as follows: 

where is an indicator variable: E,  = 1 if bond b is occupied and 
and (0) indicates a sum over pairs of nearest-neighbour sites, where 

= 0 otherwise, 

H~ = f a , l ( ~ ~  - uj R,12 + f p l l ( ( u i  - uj x R,) x R, + R (  ei + e, )z* x R,12 + + y l ~ * l  ei - ej12 
(4) 

where ui is the displacement associated with site i, 2, is a unit vector along sites i and 
j ,  Oi is the angle of the disc at site i and i is a unit vector perpendicular to the 
two-dimensional system. Here a], p1 and y1 are elastic constants; R is the radius of 
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the disc. Note that this model is rotational invariant only when R = a where a is the 
lattice spacing?. When R = 0 and a, = P I  one has the isotropic force model (or Born 
model). One sees that the Born model consists of a CF term with elastic constant a, 
and an external field term with coefficient P I .  We expect that turning on R or allowing 
the angular degrees of freedom Bi will drive the system to a new universality class 
different from that of the random resistor network (RRN). 

The field theory using Stephen’s formalism [8] has been discussed in detail by 
Harris and Lubensky in [ 1 I]. The effective Hamiltonian can be calculated as 

or 

1 - p + p  exp( -E (I H,(a ) ) ]  

where p is the concentration. Here we have introduced n replicas to facilitate the 
random average and a represents the replica index. Now we decompose (6) into its 
Fourier components exp(iK,. uix),  exp(iKy. uiy) and exp(iP- O i ) ,  where K,, Ky and P 
are n-component vectors. We obtained (up to a constant): 

Heff=-c c BK exp[iK,~(u,-uj,)Jexp[iKy~(uiy-uj,)]exp[-iRRij~,~(Bi+8j) 
(ii) K 

xexp[iRR,,K,. ( e i + e j ) ]  exp[iP. ( & - @ j ) ]  (7) 

where 

where we 
P / ( l  -PI. 

have set a ,  = PI for simplicity. Here K, = KX,e*, + KY,e*,+ 
Now we define the following quantities: 

and v = 

@ , ( K )  = exp(iKx U,) exp(iKy uiy) exp(iP. Oi) 

@ ! ; ) ( K )  = - Q o ( ~ )  sin(RKy - ei) 

@ $ ) ( K )  = @ , ( K )  sin(RK, ei) .  

@ ; ) ( K )  = Q , ( K )  COS(RK,. ei )  

@ ; ) ( K )  = @., (K)  COS(RK, e e i )  
(9) 

So (7) can be written as 

1 
HeS= -5 B ~ y ~ ’ [ Q ~ ~ ’ ( K ) Q ~ ~ ’ ( - K ) + ~ ~ ~ ) ~ K ) Q ~ ~ ’ ( - ~ ) ]  (10) 

l = x . y  ij K 

where -$’ ( y k ’ )  is the nearest-neighbour indicator along the x ( y )  direction, i.e. it is 
one if sites i a n d j  are nearest neighbours along the x ( y )  direction and zero otherwise. 
Since there is no dilution for the site, we can add the kinetic energy H ’  of the disc 
system to EleR, where 

1 
2 irr 

2 2  2 2 2  H ’ =  -- 2 (mw:u;,, + mwIuiyu +4mR w2Bin) .  

t As pointed out by Lubensky. 
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After making a Hubbard-Stratanovich transformation, we obtain 

where 

where '4' is a field variable. 
The mean-field equation can be obtained by evaluating the 9 integral in 

Du D6 e-Yff by steepest descents. Differentiating the exponent with respect to 9 
gives the mean-field equation 

where (A) denotes 5 Du D8A e-HI-H'/Z, and Z1 =I Du DO e-Hl-H'. Here we have 
used the summation convention. We now take the Fourier transformation of (13): 

W) = DP DK, DK, e i W A  e i W A  eiWepqj;)(~.)  (15) I 
where W = W,;, + W,i2 + Wee*, . We obtain 

B$( yF))-'*j;)( W) 

=4(S(W,-8j)S(W,-~,x)6( WY-~,,-ROj)) 

+ f( S (  We - 6j )S( W, - ujX)6(  W, - ~ j ,  + R6j )) 

1 m 
2 4  2 

=-exp [ -- U:( Wz+ W:) R 2  Wi-2  W,RWe 

+term with R replaced by - R 

where 
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and Bo = In( 1 + U), D: = d 2 / d  W:, D: = d2/a W i  and D: = d 2 / d  W’, . We now expand ( 1 6 )  
with respect to R WO and keep the quadratic term of WO. We obtain 
B-1( ( X ) ) - l q j ; )  

w Yij 

x(2+2R2WiD:Yl$f)+ R2WiD2Vi f ) )  

where we have written D2 = D: + 0: and W 2  = W f  + W:. 
Similarly, from (14), we have 

B-l( -lv!Y) w Y “  J 1  

x (2+2R2 W:D;V$i)+ R 2  W:D29$;)).  ( 1 9 )  
Note that 9:;) and 9:;) are symmetric in ( 1 8 )  and (19 ) ;  we assume that they have 

the same scaling form in the critical region, i.e. V$;)-q$;)- So. From ( 1 8 )  and (19), 
we obtain 

m 3m 
2 

1 
S =- ( 1  +2BwR2 W’,D2S) exp u; W2-- u:R2 W’, 

2 1  

where S = So/2Bw and we have used the fact that ( $ ) ) - I  = ( y v ) ) - l =  & / 2 .  

which is determined by 4Bo= 1.  Now we look for a solution of the form 
As discussed in detail in [ 8 ] ,  one has 2, = e4’0 to ensure the percolation threshold 

( 2 1 )  

where ro=l-4Bo and F is a scaling function. Substituting (17) and ( 2 1 )  into (20) 
and expanding the exponent, we have [ S I  

where we have omitted terms which do not contribute to (22 )  in the scaling region. 
Note that when R = 0, we have 

which is the same form as in (4.18) of [ 8 ]  with p = 1. We have [ 8 ]  qbl = 1 and A = 2  
for ( 2 3 )  which is the result of RRN. When R is not zero, we still have A = 2 and p = 1 
from (22) .  But we have qbl = 2 and qb2 = 1 (a crossover). It is the term R2 W’,ri1D2F 
in (22 )  which is responsible for the crossover. 

We now consider the two-point correlation function or elastic susceptibility 

XK,, K ,  (x, x’) = [ q K,.Ky ( )* - Kx, -  K, (x’) l a v  

av 
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where Y K + ” ( x )  = exp(iK,u,(x)+iK,u,(x)), [ la, denotes the random average, Q1 is 
the generalised displacement for compression and G is the Green function of the 
system. Hence (QllGIQl)-’ is a two-point effective elastic constant if we let the vector 
( K , ,  K,,) be parallel to x - x’. Here xP(x, x’) is the susceptibility for percolation. 
Compariny (24) with (21), we identify 41 as the crossover exponent which describes 
the way (QIIG(Q1) scales with the distance. Similarly we define the splay elastic 
susceptibility xP(x, x’) as: 

xp(x, x’) = [exp(iP&) exp(-iPB,,)],, 

whzre Q2 is the generalised displacement where the disc at x is rotated by an angle 8 
and the disc at x’ is rotated by an angle -8 and (Q21GIQ2)-l is the corresponding 
effective elastic constant. We identify 42 as the exponent which describes the way 
(Q21 GI Q2) scales with distance. If opposite sides (of length L) of a square are displaced 
by U and - U  respectively, then the energy E - 2Ku2. Using the node-link picture [ 101 
the energy is that of ( L / [ ) 2  links, each of length 5 at whose ends discs suffer a relative 
disp1acei:ient -aut/ L; thus we obtain 

(26) E - ( L / O 2 (  aut/ L)2Q-411”. 

So K - Q-+l’”, or f = q51 in two dimensions. Generally in d dimensions, we then have 

f = (d - 2 ) ~  + 41. 
This equation gives the mean-field value fMF = 4 which is consistent with the scaling 
theory [6]. It is not clear how to relate c$~ to 42. From (21), dimensional analysis 
seems to suggest that dl = 42+ 2v, or f =  dv + &. This equation is reminiscence of the 
conjectured relation [2,11-141 f =  d v + &  where is the crossover exponent for 
RRN. For the bond-bending model [2,6], we have proved [ ! 5 ]  that #B2 = & which 
supports our analysis. Although we cannot prove f =  dv + #Bre, our result favours this 
conjectured relation. 

In summary, we have constructed a Stephen-type mean-field theory. We have 
introduced two crossover exponents #B1 and & and obtained their mean-field value. 
Finally, we have discussed the relation between d2 and the bulk modulus 
exponent I: 
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