A mean-field theory of the elastic granular disc model in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L401
(http://iopscience.iop.org/0305-4470/22/9/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:58

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# A mean-field theory of the elastic granular disc model in two dimensions 

Jian Wang<br>Department of Chemistry, Brandeis University, Waltham, MA 02254, USA

Received 20 January 1989


#### Abstract

We have constructed a Stephen-type mean-field theory for the elastic granular disc model in two dimensions. We have calculated the mean-field value of two crossover exponents $\phi_{1}$ and $\phi_{2}$, which describe the ways in which the two-point elastic susceptibility and the angle-angle correlation function scale with the distance, respectively. We found that $\phi_{1}=2$ and $\phi_{2}=1$. The possible relation of $\phi_{1}$ and $\phi_{2}$ to the bulk modulus exponent $f$ is discussed.


Recently much attention has been directed towards randomly diluted elastic networks. Most studies have focused on the following aspects: (1) computer simulation [1-5]; (2) scaling analysis [6,7]. Up to now, a field theory or even a mean-field theory to understand the critical behaviour of an elastic network has not been proposed. In this letter, we give a Stephen-type mean-field [8] theory for a two-dimensional granular disc model introduced by Feng [9]. We introduce two crossover exponents $\phi_{1}$ and $\phi_{2}$ describing the ways in which the two-point elastic susceptibility and splay elastic susceptibility (or angle-angle correlation function) scale with the distance, respectively. We show that as we turn on the angular part in the granular disc Hamiltonian, we have a crossover from $\phi_{1}=1$ to $\phi_{1}=2$. Using a node link picture [10], one can get a scaling relation relating $\phi_{1}$ to the bulk modulus exponent $f$ as

$$
\begin{equation*}
f=(d-2) \nu+\phi_{1} . \tag{1}
\end{equation*}
$$

Our result gives $f_{\mathrm{MF}}=4$ which agrees with the scaling analysis [6]. A possible relation between $\phi_{2}$ and $\phi_{1}$ would be $\phi_{1}=\phi_{2}+2 \nu$ from dimensional analysis. Hence we may have

$$
\begin{equation*}
f=d \nu+\phi_{2} . \tag{2}
\end{equation*}
$$

The Hamiltonian of the granular disc model [9] can be written as follows:

$$
\begin{equation*}
H=\sum_{\langle i j)} H_{i j} \varepsilon_{i j} \tag{3}
\end{equation*}
$$

where $\varepsilon_{i j}$ is an indicator variable: $\varepsilon_{i j}=1$ if bond $b$ is occupied and $\varepsilon_{i j}=0$ otherwise, and $\langle i j\rangle$ indicates a sum over pairs of nearest-neighbour sites, where

$$
\begin{equation*}
H_{i j}=\frac{1}{2} \alpha_{1}\left|\left(u_{i}-u_{j}\right) \cdot \hat{R}_{i j}\right|^{2}+\frac{1}{2} \beta_{1}\left|\left(\left(u_{i}-u_{j}\right) \times \hat{R}_{i j}\right) \times \hat{R}_{i j}+R\left(\theta_{i}+\theta_{j}\right) \hat{z} \times \hat{R}_{i j}\right|^{2}+\frac{1}{2} \gamma_{1} R^{2}\left|\theta_{i}-\theta_{j}\right|^{2} \tag{4}
\end{equation*}
$$

where $u_{i}$ is the displacement associated with site $i, \hat{R}_{i j}$ is a unit vector along sites $i$ and $j, \theta_{i}$ is the angle of the disc at site $i$ and $\hat{z}$ is a unit vector perpendicular to the two-dimensional system. Here $\alpha_{1}, \beta_{1}$ and $\gamma_{1}$ are elastic constants; $R$ is the radius of
the disc. Note that this model is rotational invariant only when $R=a$ where $a$ is the lattice spacing $\dagger$. When $R=0$ and $\alpha_{1}=\beta_{1}$ one has the isotropic force model (or Born model). One sees that the Born model consists of a CF term with elastic constant $\alpha_{1}$ and an external field term with coefficient $\beta_{1}$. We expect that turning on $R$ or allowing the angular degrees of freedom $\theta_{i}$ will drive the system to a new universality class different from that of the random resistor network (RRN).

The field theory using Stephen's formalism [8] has been discussed in detail by Harris and Lubensky in [11]. The effective Hamiltonian can be calculated as

$$
\begin{equation*}
\mathrm{e}^{-H_{c f}}=\prod_{\langle i j\rangle}\left[1-p+p \exp \left(-\sum_{\alpha} H_{i j}(\alpha)\right)\right] \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
-H_{\mathrm{eff}}=\sum_{\langle i j\rangle} \ln \left[1-p+p \exp \left(-\sum_{\alpha} H_{i j}(\alpha)\right)\right] \tag{6}
\end{equation*}
$$

where $p$ is the concentration. Here we have introduced $n$ replicas to facilitate the random average and $\alpha$ represents the replica index. Now we decompose (6) into its Fourier components $\exp \left(\mathrm{i} \boldsymbol{K}_{x} \cdot \boldsymbol{u}_{i x}\right), \exp \left(\mathrm{i} \boldsymbol{K}_{y} \cdot \boldsymbol{u}_{i y}\right)$ and $\exp \left(\mathrm{i} \boldsymbol{P} \cdot \boldsymbol{\theta}_{i}\right)$, where $\boldsymbol{K}_{x}, \boldsymbol{K}_{y}$ and $\boldsymbol{P}$ are $n$-component vectors. We obtained (up to a constant):

$$
\begin{gather*}
H_{\mathrm{eff}}=-\sum_{\langle i j\rangle} \sum_{\boldsymbol{K}} B_{\boldsymbol{K}} \exp \left[\mathrm{i} \boldsymbol{K}_{x} \cdot\left(\boldsymbol{u}_{i x}-\boldsymbol{u}_{j x}\right)\right] \exp \left[\mathrm{i} \boldsymbol{K}_{y} \cdot\left(\boldsymbol{u}_{i y}-\boldsymbol{u}_{j y}\right)\right] \exp \left[-\mathrm{i} R R_{i j y} \boldsymbol{K}_{x} \cdot\left(\boldsymbol{\theta}_{i}+\boldsymbol{\theta}_{j}\right)\right. \\
\times \exp \left[\mathrm{i} R R_{i j x} \boldsymbol{K}_{y} \cdot\left(\boldsymbol{\theta}_{i}+\boldsymbol{\theta}_{j}\right)\right] \exp \left[\mathrm{i} \boldsymbol{P} \cdot\left(\boldsymbol{\theta}_{i}-\boldsymbol{\theta}_{j}\right)\right] \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
B_{K}=\sum_{l=1}^{\infty} \frac{(-1)^{l+1}}{l} v^{l} \exp \left(-\frac{P^{2}}{2 l \gamma_{1} R^{2}}\right) \exp \left(-\frac{K_{x}^{2}+K_{y}^{2}}{2 l \alpha_{1}}\right) \tag{8}
\end{equation*}
$$

where we have set $\alpha_{1}=\beta_{1}$ for simplicity. Here $K_{\alpha} \equiv K_{x \alpha} \hat{\hat{e}}_{1}+K_{y \alpha} \hat{\hat{e}}_{2}+P_{\alpha} \hat{e}_{3}$ and $v=$ $p /(1-p)$. Now we define the following quantities:

$$
\begin{align*}
& \Phi_{0}(\boldsymbol{K})=\exp \left(\mathrm{i} \boldsymbol{K}_{x} \cdot \boldsymbol{u}_{i x}\right) \exp \left(\mathrm{i} \boldsymbol{K}_{y} \cdot \boldsymbol{u}_{i y}\right) \exp \left(\mathrm{i} \boldsymbol{P} \cdot \boldsymbol{\theta}_{i}\right) \\
& \Phi_{i 1}^{(x)}(\boldsymbol{K})=\Phi_{0}(\boldsymbol{K}) \cos \left(R \boldsymbol{K}_{y} \cdot \boldsymbol{\theta}_{i}\right) \\
& \Phi_{i 2}^{(x)}(\boldsymbol{K})=-\Phi_{0}(\boldsymbol{K}) \sin \left(R \boldsymbol{K}_{y} \cdot \boldsymbol{\theta}_{i}\right)  \tag{9}\\
& \Phi_{i 1}^{(y)}(\boldsymbol{K})=\Phi_{0}(\boldsymbol{K}) \cos \left(R \boldsymbol{K}_{x} \cdot \boldsymbol{\theta}_{i}\right) \\
& \Phi_{i 2}^{(y)}(\boldsymbol{K})=\Phi_{0}(\boldsymbol{K}) \sin \left(R \boldsymbol{K}_{x} \cdot \boldsymbol{\theta}_{i}\right) .
\end{align*}
$$

So (7) can be written as

$$
\begin{equation*}
H_{\mathrm{eff}}=-\frac{1}{2} \sum_{l=x, y} \sum_{i j} \sum_{\boldsymbol{K}} B_{K} \gamma_{i j}^{(l)}\left[\Phi_{i 1}^{(l)}(\boldsymbol{K}) \Phi_{j 1}^{(l)}(-\boldsymbol{K})+\Phi_{i 2}^{(l)}(\boldsymbol{K}) \Phi_{j 2}^{(l)}(-\boldsymbol{K})\right] \tag{10}
\end{equation*}
$$

where $\gamma_{i j}^{(x)}\left(\gamma_{i j}^{(y)}\right)$ is the nearest-neighbour indicator along the $x(y)$ direction, i.e. it is one if sites $i$ and $j$ are nearest neighbours along the $x(y)$ direction and zero otherwise. Since there is no dilution for the site, we can add the kinetic energy $H^{\prime}$ of the disc system to $H_{\text {eff }}$, where

$$
H^{\prime}=-\frac{1}{2} \sum_{i \alpha}\left(m \omega_{1}^{2} u_{i \times \alpha}^{2}+m \omega_{1}^{2} u_{i y \alpha}^{2}+\frac{1}{2} m R^{2} \omega_{2}^{2} \theta_{i \alpha}^{2}\right) .
$$

[^0]After making a Hubbard-Stratanovich transformation, we obtain

$$
\begin{gather*}
\mathrm{e}^{-H_{\text {eff }}}=\int(\mathrm{D} \Psi) \exp \left(-\frac{1}{2} \sum_{l=x, y} \sum_{i j} \sum_{\boldsymbol{K}} B_{\boldsymbol{K}}^{-1}\left(\gamma_{i j}^{(l)}\right)^{-1}\left(\Psi_{i 1}^{(l)}(\boldsymbol{K}) \Psi_{j 1}^{(l)}(-\boldsymbol{K})\right.\right. \\
\left.\left.+\Psi_{i 2}^{(l)}(\boldsymbol{K}) \Psi_{j 2}^{(l)}(-\boldsymbol{K})\right)\right) \mathrm{e}^{-\boldsymbol{H}_{1}-H^{\prime}} \tag{11}
\end{gather*}
$$

where

$$
\begin{equation*}
H_{1}=\sum_{l=x, y} \sum_{i} \sum_{\boldsymbol{K}}\left[\Psi_{i 1}^{(l)}(\boldsymbol{K}) \Phi_{i 1}^{(l)}(-\boldsymbol{K})+\Psi_{i 2}^{(l)}(\boldsymbol{K}) \Phi_{i 2}^{(l)}(-\boldsymbol{K})\right] \tag{12}
\end{equation*}
$$

where $\Psi$ is a field variable.
The mean-field equation can be obtained by evaluating the $\Psi$ integral in $\int \mathrm{D} u \mathrm{D} \theta \mathrm{e}^{-H_{\text {eff }}}$ by steepest descents. Differentiating the exponent with respect to $\Psi$ gives the mean-field equation

$$
\begin{align*}
& B_{K}^{-1}\left(\gamma_{i j}^{(x)}\right)^{-1} \Psi_{i 1}^{(x)}(\boldsymbol{K})=\left\langle\Phi_{j 1}^{(x)}(\boldsymbol{K})\right\rangle  \tag{13}\\
& B_{\boldsymbol{K}}^{-1}\left(\gamma_{i j}^{(y)}\right)^{-1} \Psi_{i 1}^{(y)}(\boldsymbol{K})=\left\langle\Phi_{j 1}^{(\gamma)}(\boldsymbol{K})\right\rangle \tag{14}
\end{align*}
$$

where $\langle A\rangle$ denotes $\int \mathrm{D} u \mathrm{D} \theta A \mathrm{e}^{-H_{1}-H^{\prime}} / Z_{1}$ and $Z_{1}=\int \mathrm{D} u \mathrm{D} \theta \mathrm{e}^{-H_{1}-H^{\prime}}$. Here we have used the summation convention. We now take the Fourier transformation of (13):

$$
\begin{equation*}
\Psi_{i 1}^{(x)}(\boldsymbol{W}) \equiv \int \mathrm{D} P \mathrm{D} K_{x} \mathrm{D} K_{y} \mathrm{e}^{\mathrm{i} W_{x} K_{x}} \mathrm{e}^{\mathrm{i} W_{y} K_{y}} \mathrm{e}^{\mathrm{i} W_{\theta} P} \Psi_{i 1}^{(x)}(\boldsymbol{K} .) \tag{15}
\end{equation*}
$$

where $\boldsymbol{W}=W_{x} \hat{e}_{1}+W_{y} \hat{e}_{2}+W_{\theta} \hat{e}_{3}$. We obtain

$$
\begin{align*}
& B_{W}^{-1}\left(\gamma_{i j}^{(x)}\right)^{-1} \Psi_{j 1}^{(x)}(\boldsymbol{W}) \\
&= \frac{1}{2}\left(\delta\left(W_{\theta}-\theta_{j}\right) \delta\left(W_{x}-u_{j x}\right) \delta\left(W_{y}-u_{j y}-R \theta_{j}\right)\right\rangle \\
&+\frac{1}{2}\left(\delta\left(W_{\theta}-\theta_{j}\right) \delta\left(W_{x}-u_{j x}\right) \delta\left(W_{y}-u_{j y}+R \theta_{j}\right)\right\rangle \\
&= \frac{1}{2 Z_{1}} \exp \left[-\frac{m}{2} \omega_{1}^{2}\left(W_{x}^{2}+W_{y}^{2}\right)-\frac{m}{2} \omega_{2}^{2}\left(\frac{3}{2} R^{2} W_{\theta}^{2}-2 W_{y} R W_{\theta}\right)\right. \\
&+\frac{1}{2} \Psi_{j 1}^{(x)}(\boldsymbol{W})+\frac{1}{2} \Psi_{j 1}^{(x)}\left(\boldsymbol{W}-R W_{\theta} \hat{e}_{2}\right) \\
&+\frac{1}{2 \mathrm{i}} \Psi_{j 2}^{(x)}(\boldsymbol{W})-\frac{1}{2 \mathrm{i}} \Psi_{j 2}^{(x)}\left(\boldsymbol{W}-2 R W_{\theta} \hat{e}_{2}\right) \\
&+\frac{1}{2} \Psi_{j 1}^{(y)}\left[\boldsymbol{W}-R W_{\theta}\left(\hat{e}_{1}+\hat{e}_{2}\right)\right]+\frac{1}{2} \Psi_{j 1}^{(y)}\left[\boldsymbol{W}+R W_{\theta}\left(\hat{e}_{1}-\hat{e}_{2}\right)\right] \\
&\left.+\frac{1}{2 \mathrm{i}} \Psi_{j 2}^{(y)}\left[\boldsymbol{W}-R W_{\theta}\left(\hat{e}_{1}+\hat{e}_{2}\right)\right]-\frac{1}{2 \mathrm{i}} \Psi_{j 2}^{(y)}\left[\boldsymbol{W}-R W_{\theta}\left(\hat{e}_{1}-\hat{e}_{2}\right)\right]\right] \\
&+ \text { term with } R \text { replaced by }-R \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
B_{W}=B_{0}+\frac{D_{3}^{2}}{4 \gamma_{2} R^{2}}+\frac{D_{1}^{2}+D_{2}^{2}}{4 \alpha_{2}}+\ldots \tag{17}
\end{equation*}
$$

and $B_{0}=\ln (1+v), D_{1}^{2}=\partial^{2} / \partial W_{x}^{2}, D_{2}^{2}=\partial^{2} / \partial W_{y}^{2}$ and $D_{3}^{2}=\partial^{2} / \partial W_{\theta}^{2}$. We now expand (16) with respect to $R W_{\theta}$ and keep the quadratic term of $W_{\theta}$. We obtain

$$
\begin{align*}
& B_{W}^{-1}\left(\gamma_{i j}^{(x)}\right)^{-1} \Psi_{j 1}^{(x)} \\
&= \frac{1}{2 Z_{1}} \exp \left(\Psi_{i 1}^{(x)}+\Psi_{i 1}^{(y)}-\frac{m}{2} \omega_{1}^{2} W^{2}-\frac{3 m}{4} \omega_{2}^{2} R^{2} W_{\theta}^{2}\right) \\
& \times\left(2+2 R^{2} W_{\theta}^{2} D_{2}^{2} \Psi_{i 1}^{(x)}+R^{2} W_{\theta}^{2} D^{2} \Psi_{i 1}^{(y)}\right) \tag{18}
\end{align*}
$$

where we have written $D^{2}=D_{1}^{2}+D_{2}^{2}$ and $W^{2}=W_{x}^{2}+W_{y}^{2}$.
Similarly, from (14), we have
$B_{W}^{-1}\left(\gamma_{i j}^{(y)}\right)^{-1} \Psi_{j 1}^{(\gamma)}$

$$
\begin{align*}
= & \frac{1}{2 Z_{1}} \exp \left(\Psi_{i 1}^{(x)}+\Psi_{i 1}^{(y)}-\frac{m}{2} \omega_{1}^{2} W^{2}-\frac{3 m}{4} \omega_{2}^{2} R^{2} W_{\theta}^{2}\right) \\
& \times\left(2+2 R^{2} W_{\theta}^{2} D_{1}^{2} \Psi_{i 1}^{(y)}+R^{2} W_{\theta}^{2} D^{2} \Psi_{i 1}^{(x)}\right) \tag{19}
\end{align*}
$$

Note that $\Psi_{i 1}^{(x)}$ and $\Psi_{i 1}^{(y)}$ are symmetric in (18) and (19); we assume that they have the same scaling form in the critical region, i.e. $\Psi_{i 1}^{(x)} \sim \Psi_{i 1}^{(y)} \sim S_{0}$. From (18) and (19), we obtain

$$
\begin{equation*}
S=\frac{1}{Z_{1}}\left(1+2 B_{W} R^{2} W_{\theta}^{2} D^{2} S\right) \exp \left(4 B_{W} S-\frac{m}{2} \omega_{1}^{2} W^{2}-\frac{3 m}{2} \omega_{2}^{2} R^{2} W_{\theta}^{2}\right) \tag{20}
\end{equation*}
$$

where $S=S_{0} / 2 B_{W}$ and we have used the fact that $\left(\gamma_{i j}^{(x)}\right)^{-1}=\left(\gamma_{i j}^{(y)}\right)^{-1}=\delta_{i j} / 2$.
As discussed in detail in [8], one has $Z_{1}=e^{4 B_{0}}$ to ensure the percolation threshold which is determined by $4 B_{0}=1$. Now we look for a solution of the form

$$
\begin{equation*}
S=1-r_{0}^{\beta} F\left(\alpha_{2} W^{2} r_{0}^{\phi_{1}}, \gamma_{2} W_{\theta}^{2} R^{2} r_{0}^{\phi_{2}}, \frac{\omega_{1}^{2}}{\alpha_{2} r_{0}^{\Delta+\phi_{1}}}, \frac{\omega_{2}^{2}}{\gamma_{2} R^{2} r_{0}^{\Delta+\phi_{2}}}\right) \tag{2i}
\end{equation*}
$$

where $r_{0}=1-4 B_{0}$ and $F$ is a scaling function. Substituting (17) and (21) into (20) and expanding the exponent, we have [8]
$\frac{1}{2} F^{2}+r_{0}^{1-\beta} F-\frac{m \omega_{1}^{2}}{2 r_{0}^{2 \beta}} W^{2}-\frac{3 m \omega_{2}^{2}}{4 r_{0}^{2 \beta}} R^{2} W_{\theta}^{2}-\frac{R^{2}}{r_{0}^{\beta}} W_{\theta}^{2} D^{2} F-\frac{1}{\alpha_{2} r_{0}^{\beta}} D^{2} F-\frac{1}{\gamma_{2} r_{0}^{\beta}} D_{3}^{2} F=0$
where we have omitted terms which do not contribute to (22) in the scaling region. Note that when $R=0$, we have

$$
\begin{equation*}
\frac{1}{2} F^{2}+r_{0}^{1-\beta} F-\frac{m \omega_{1}^{2}}{2 r_{0}^{2 \beta}} W^{2}-\frac{1}{\alpha_{2} r_{0}^{\beta}} D^{2} F=0 \tag{23}
\end{equation*}
$$

which is the same form as in (4.18) of [8] with $\beta=1$. We have [8] $\phi_{1}=1$ and $\Delta=2$ for (23) which is the result of RRN. When $R$ is not zero, we still have $\Delta=2$ and $\beta=1$ from (22). But we have $\phi_{1}=2$ and $\phi_{2}=1$ (a crossover). It is the term $R^{2} W_{\theta}^{2} r_{0}^{-1} D^{2} F$ in (22) which is responsible for the crossover.

We now consider the two-point correlation function or elastic susceptibility

$$
\begin{align*}
\chi_{K_{x}, K_{y}}\left(x, x^{\prime}\right) & =\left[\Psi_{K_{x}, K_{v}}(x) \Psi_{-K_{x}, K_{y}}\left(x^{\prime}\right)\right]_{\mathrm{av}} \\
& =\left[\exp \left(-\frac{K^{2}}{2}\left\langle Q_{1}\right| G\left|Q_{1}\right\rangle\right)\right]_{\mathrm{av}} \\
& \simeq \chi_{\mathrm{p}}\left(x, x^{\prime}\right)\left(1-\frac{K^{2}}{2 \alpha_{1}} L^{\phi_{1} / \nu}\right) \tag{24}
\end{align*}
$$

where $\Psi_{K_{x}, K_{y}}(x)=\exp \left(\mathrm{i} K_{x} u_{x}(x)+\mathrm{i} K_{y} u_{y}(x)\right),[]_{\mathrm{av}}$ denotes the random average, $Q_{1}$ is the generalised displacement for compression and $G$ is the Green function of the system. Hence $\left\langle Q_{1}\right| G\left|Q_{1}\right\rangle^{-1}$ is a two-point effective elastic constant if we let the vector ( $K_{x}, K_{y}$ ) be parallel to $\boldsymbol{x}-\boldsymbol{x}^{\prime}$. Here $\chi_{\mathrm{p}}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is the susceptibility for percolation. Comparing (24) with (21), we identify $\phi_{1}$ as the crossover exponent which describes the way $\left\langle Q_{1}\right| G\left|Q_{1}\right\rangle$ scales with the distance. Similarly we define the splay elastic susceptibility $\chi_{p}\left(x, x^{\prime}\right)$ as:

$$
\begin{align*}
\chi_{\mathrm{p}}\left(x, x^{\prime}\right) & =\left[\exp \left(\mathrm{i} P \theta_{x}\right) \exp \left(-\mathrm{i} P \theta_{x^{\prime}}\right)\right]_{\mathrm{av}} \\
& =\left[\exp \left(-\frac{P^{2}}{2}\left\langle Q_{2}\right| G\left|Q_{2}\right\rangle\right)\right] \mathrm{av} \\
& \approx \chi_{\mathrm{p}}\left(x, x^{\prime}\right)\left(1-\frac{P^{2}}{2 \gamma_{1}} L^{\phi_{2} / \nu}\right) \tag{25}
\end{align*}
$$

where $Q_{2}$ is the generalised displacement where the disc at $x$ is rotated by an angle $\theta$ and the disc at $x^{\prime}$ is rotated by an angle $-\theta$ and $\left\langle Q_{2}\right| G\left|Q_{2}\right\rangle^{-1}$ is the corresponding effective elastic constant. We identify $\phi_{2}$ as the exponent which describes the way $\left\langle Q_{2}\right| G\left|Q_{2}\right\rangle$ scales with distance. If opposite sides (of length $L$ ) of a square are displaced by $u$ and $-u$ respectively, then the energy $E \sim 2 K u^{2}$. Using the node-link picture [10] the energy is that of $(L / \xi)^{2}$ links, each of length $\xi$ at whose ends discs suffer a relative displacement $\sim a u \xi / L$; thus we obtain

$$
\begin{equation*}
E \sim(L / \xi)^{2}(a u \xi / L)^{2} k \xi^{-\phi_{1} / \nu} . \tag{26}
\end{equation*}
$$

So $K \sim k \xi^{-\phi_{1} / \nu}$, or $f=\phi_{1}$ in two dimensions. Generally in $d$ dimensions, we then have

$$
f=(d-2) \nu+\phi_{1} .
$$

This equation gives the mean-field value $f_{\mathrm{MF}}=4$ which is consistent with the scaling theory [6]. It is not clear how to relate $\phi_{1}$ to $\phi_{2}$. From (21), dimensional analysis seems to suggest that $\phi_{1}=\phi_{2}+2 \nu$, or $f=d \nu+\phi_{2}$. This equation is reminiscence of the conjectured relation [2,11-14] $f=d \nu+\phi_{\mathrm{re}}$ where $\phi_{\mathrm{re}}$ is the crossover exponent for RRN. For the bond-bending model [2,6], we have proved [15] that $\phi_{2}=\phi_{\mathrm{re}}$ which supports our analysis. Although we cannot prove $f=d \nu+\phi_{\mathrm{re}}$, our result favours this conjectured relation.

In summary, we have constructed a Stephen-type mean-field theory. We have introduced two crossover exponents $\phi_{1}$ and $\phi_{2}$ and obtained their mean-field value. Finally, we have discussed the relation between $\phi_{1}, \phi_{2}$ and the bulk modulus exponent $f$.

I would like to thank Professor A B Harris for his guidance and support, and Professor T C Lubensky for helpful discussions. I thank the NSF for partial support under grant no DMR 85-19059 of the MRL program, and the NIH for support under grant no 4-60357.

## References

[1] Feng S and Seng P N 1984 Phys. Rev. Lett. 52216
[2] Feng S C, Sen P N, Halperin B I and Lobb C J 1984 Phys. Rev. B 305386
[3] Day A R, Tremblay R R and Tremblay A M S 1986 Phys. Rev. Lett. 562501
[4] Roux S and Hansen A 1988 Europhys. Lett. 6301
Hansen A and Roux S 1988 Universality Class of Central Force Percolation preprint
[5] Zabolitzky J G, Bergmann D J and Stauffer D 1986 J. Stat. Phys. 44211
[6] Kantor Y and Webman I 1984 Phys. Rev. Lett. 521891
[7] Bergman D J and Kantor Y 1984 Phys. Rev. Lett. 53511
[8] Stephen M J 1978 Phys. Rev. B 174444
[9] Schwartz L M, Johnson D L and Feng S 1984 Phys. Rev. Lett. 52831
Feng S 1985 Phys. Rev. B 32510
[10] Skal A S and Shklovskii B I 1974 Fiz. Tekh. Poluprovodn. 81582 (Sov. Phys.-Semicond. 19758 1029)
[11] Har-is A B and Lubensky T C 1987 Phys. Rev. B 356964
[12] Roux S 1986 J. Phys. A: Math. Gen. 19 L351
[13] Sahimi M 1986 J. Phys. C: Solid State Phys. 19 L79
[14] Harris A B and Lubensky T C unpublished
[15] Wang J and Harris A B 1988 Europhys. Lett. 6615
Wang J, Harris A B and Lubensky T C unpublished


[^0]:    $\dagger$ As pointed out by Lubensky.

